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Generalized dimer states 

M W Long and C A Hayward 
School Of Physics, Birmingham University. Edgbaston. Birmingham B15 Z l T ,  UK 

Received 17 January 1994 

Abstract. We present a new class of variational wavefunctions lhat can be used to investigate 
quantum antiferromagnetic systems. ”he states are a namral generalization of the nearest. 
neighbour dimer phases which have been thomughly studied in the literature. We describe 
a one-dimensional class of total-spin-singlet wavefunctions. which include as special cases 
the two nearest-neighbour dimer phases and the exact solution to the total-spin-hvo projector 
Hamiltonian. These different solutions are ’smoothly’ interpolated by a range of singlets with 
short-range correlations. Although the states have only shon-range order, we can obtain over 
98% of the ground-state energy of the nearest-neighbour Heisenberg model. We apply our 
basis to the Jl-Jz Heisenberg model and the single hole in the II-tZ infinite-U Hubbard model, 
successfuUy predicting the behaviour observed in finitesize scaling calculations. 

1. Introduction 

Classical magnetism is concerned primarily with ordered states. Quantum corrections 
introduce ‘fluctuations’ that tend to reduce the degree of order, but usually quantum 
mechanics can safely be ignored as a ‘renormalization’ of parameters. In rare situations, 
however, quantum mechanics can fundamentally change the physics of a quantum magnet: 
in one dimension, long-range order is destroyed by quantum mechanical fluctuations (if there 
are any), and an interesting state with a power-law decay of correlations and ‘self-similar’ 
characteristics replaces it [I]. For heavily frustrated systems in any dimension, so-called 
‘dimer’ phases with only short-range spin correlations and a gap to excitations can also be 
stabilized [2].  In this paper we will look at possible ways to describe dimer states in spin- 
half systems, developing some bases which can be used to perform variational calculations 
on most types of dimer state. We are not the first to use this type of construction [3], 
although our particular approach appears to be new. 

Although the basic idea can be used to provide a complete basis if required, we will 
dominantly be concerned with applications that involve only exponential decay of correlation 
functions. We will not therefore be describing gapless systems involving a power-law decay 
of correlation functions, but only dimer phases. We will devote some thought to the gapless 
phases, however, showing that there are fairly long-range remnants of any divergence in 
our calculations, a signature that would be dimcult to miss. 

It has proven possible to evaluate some comelation functions in our description and 
we will provide examples of spin-spin correlation functions and also ring-exchange or 
cyclic-permutation correlations, which are important in a proper description of the o n e  
dimensional Heisenberg model and phase transitions between gapless and gapped states 
(see the appendix). 

We have selected two physical examples for use as applications of our ideas. First, the 
Jt-Jz Heisenberg model, with nearest-neighbour and next-nearest-neighbour interactions, 
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which exhibits a phase transition between a gapless and gapped phase. Second, a single 
hole in the f1-r2 infinite-U Hubbard model, with competing nearest-neighbour and next- 
nearest-neighbour hopping, which has surprisingly rich behaviour with the spin density 
shifting around dramatically in reciprocal space. 

In section 2 \ye describe the mathematical ideas behind the calculations, in section 3 we 
perform the correlation function calculations, in section 4 we look at the JI -Jz  Heisenberg 
model, in section 5 we analyse a single hole in the tl-tz infinite&' Hubbard model, and in 
section 6 we present our conclusions. 

M W Long and C A  Hayward 

2. The basis of total-spin-singlet states 

The fundamental physical idea that we make use of is that a complete basis of total- 
spin-singlet states for a spin-half system can be obtained using non-interleaved singlets 
running between two sublattices [4]. This description requires an ordering, and then the 
two sublattices alternate along this ordering. A total-spin-singlet state is created by laying 
down singlets with one end on one sublattice and the other end on the other sublattice. The 
basis composed of all such states is overcomplete and we require a restriction in order to 
form a linearly independent basis. One choice of restriction is that to non-interleaved states: 
a non-interleaved state is one for which, when any two singlets are considered, both ends 
of one singlet are always between the ends of the other. States with this restriction form a 
complete linearly independent but non-orthogonal basis [4]. 

This choice of representation yields a new description for the total-spin-singlet subspace, 
but its success will be controlled by its ease of use and predictive power. In this paper 
we propose simple methods of using this representation, or at least sizable subsets of it, to 
perform analytical calculations on simple one-dimensional models. 

Our first task is to obtain a formal way to represent our chosen states, and for this we 
have elected to use a nearest-neighbour dimer state, combined with transposition operators. 
We choose (arbitrarily) one of the two nearest-neighbour dimer states and use a label, j say, 
to label either the singlets or one of the sublattices along the ordering, We then consider 
the transposition operators, p, say, which transpose the two neighbouring spins on the j th 
singlet and the ( j  + 1)th singlet. All these operators commute, and we can therefore create 
a subspace of total-spin singlets with 

where N is the number of singlets, ID) is the dimer state, and the variables x j  take the 
values 0 and 1. This leads to a binary description of ZN-' singlet states, and we will do the 
majority of our analysis on this subspace. To generate the rest of the singlet space we have 
to resort to a 'hierarchical' construction. We next consider the transposition operators, Qj ,  

which transpose the two neighbouring spins that compose the original j t h  singlet. Such an 
operator only yields a linearly independent state if it acts on a state for which both e, and 

are present. We therefore obtain a second 'level' of states: 

where the value of x f j  is zero unless boih x j  and x j - l  are equal to one. Obviously x" 
is unused because there is no corresponding x i .  The next hierarchy of states is created by 
applying the @j operators to states which have both Qj  and Qj+l present, and it should 
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be easy for the reader to see how to construct the entire singlet space hierarchically. It is 
straightforward to show that all non-interleaved states can be constructed in this way, and it 
has previously been proved that these states form a linearly independent complete basis[4]. 

Although this representation allows us to describe sizable numbers of total-spin singlets, 
there is one important drawback: the states are non-orthogonal, In order to make use of these 
states this problem has to be overcome. Fortunately, it is possible to control the overlap 
between different singlet states using the simple idea that (Dl lD2)  = %1/2N3"*q-NI-, where 
N, ,  is the number of inequivalent singlets in the two dimer states and N,oop is the number 
of 'closed loops' composed of pairs of singlets on both dimers. To find a closed loop, 
alternate between the two dimer states, hopping from one end of a singlet to the other, until 
you return to the initial atom. For the states encountered in the first hierarchy, each initial 
isolated operator pj  makes two new inequivalent singlets and one loop, and each subsequent 
neighbouring operator pj*, makes one new inequivalent singlet with no new closed loops, 
so 

where N J  is the number of the pj ,  independent of their configuration. This result enables 
us to orthogonalize our subspace generated by the first hierarchy, since each $j may be 
treated independently. 

We have elected not to work with our arbitrarily chosen dimer as the 'vacuum' for 
technical reasons, and instead we introduce a single-parameter family of vacua: 

Ix) = n(LY - BPj)lW (2.4a) 
j 

where x = a@, and normalization is ensured by LY? + Bz = 1 +cup = 1 + x ,  from which it 
can be deduced that 

01 = I [ J ( l +  3 x )  + J(l - x ) ]  (2.4b) 

@ = + 3 x )  - J(1 - x ) l  (2 .4~)  

in terms of the single parameter x ,  which we choose to vary between -1/3 and 1. 
This family of wavefunctions includes several cases which have previously been 

considered in the literature: the two Majumdar-Ghosh ground states 121, and the ground 
state to the '9' projector Hamiltonian [5 ] .  Obviously, the special value x = 0 corresponds 
to one of the nearest-neighbour dimer states, but the value x = 1 corresponds to the other: 
this value yields LY = 1 = p, and therefore yields a state which is unfisymmefric under the 
action of all the pj. which must in turn imply that all such pairs of a tom are in total-spin 
singlets. The special value x = -1/3 yields LY = 1/J3 = -@. and so leads to a state which 
is symmefric under the action of all the kj, which must in turn imply that all such pairs are 
in total-spin-triplet configurations. Since the original singlet remains attached by each end 
to its neighbouring triplets, this state must be the unique ground state to the Hamiltonian 
which penalizes total-spin-two configurations between neighbouring spin-one atoms. Our 
class of wavefunctions smoothly interpolates between these states, allowing states with a 
variety of short-range correlations. 
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Since there are two degrees of freedom per Fj, namely present or not-present, we can 
also define an 'excitation': 

where yz  + a2 = 1 + y8 = 1 + y. It can be shown that x + y = and therefore that 

(2.5b) 

(2.5~) 

in terms of x .  
It should be clear that in this first hierarchy of states the operators Fj are treated exactly, 

yielding states that are entirely contained within the chosen subspace; Since ne?t-nearest- 
neighbour exchange may be written down in the form of either PjQjPj or kj-1 QjPj-1, we 
can handle any problem involving nearest-neighbour or next-nearest-neighbour exchange, 
if we can represent the Qj in our chosen subspace. 

It is seaightforward but tedious to show that 

(2.6a) 

(2.6b) 

{ x ~ d j ~ x )  = a(x)  = -$+ax 3 2  - +(I - x ) . / ( ~  - x ) , / ( l +  3x1 

(x lQ jd j l x )  = (xIQjdf-,lx) = b ( x )  = $[3x(1 - x )  + x J ( l  -x)J(1 + 3 x ) J  

{x ld jd jd f l x )  = (xldj- iQldj- l lx) " t  = d ( x )  = $+ $ X  - $ x Z f $ ( 1  -3x)J(1 -x)J(1+3x) 
(2.6~) 

(2.6d) (x ld j - l$d j [x)  = {x[djd;d!-Jx) = d(x)  - 1 

(x \d jb jd jd ! - l [x )  = (xldj-1 Q,d]dj-l[x) = f(x) 

= $ ( x  - $)[(1+ 3x) i J(l - x ) J ( l +  3x)l (2.6e) 

(2.60 {x ld j - id jd jd fd j - l lx )  = g ( x )  = -$ + : ( x  - $)' + $ ( l +  3x)J(1 - x)J(1 + 32) 

where all quantities are real, from which the Hemitian conjugates can be deduced. 
Using the operation of Pj on our basis 

p j l ~ )  = (A(x)  - B(x)d j ) l x )  t 

Fjd j lx )  = ( -B(x )  - A(x)d])Ix) 

where 

A ( x )  = $( l  - 3 x )  

B ( x )  = qJ(1 - x ) J ( l +  3x). 

We are now in a position to construct any simple Hamiltonian in our chosen basis. 

(2.7a) 

(2.7b) 

(2.7~) 

(2nd) 
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Perhaps the simplest interesting Hamiltonian is the J1-& Heisenberg Hamiltonian: 

H = J I  S;. . S,+I + 52  Si . Si+2 (2.8) 
i i 

which becomes 

where we have set J I  = J and J2 = b J .  In out first hierarchy space this reduces to 

where the coefficients satisfy 

ao = a  + A - 1 + A(2A2a + 2B2d - 4ABb - 1) (2.10b) 

(2.10c) 

(2.10d) 

(2.10e) 

ai = d - a  - A + b[2AZ(d - U )  + BZ(a + g - 2d) + 2AB(3b - f)] 

a2 = d - 1 + A[-2A2(d - 1) + 2BZ(d - 1) + 2AB(f - b)] 

a3 = a  + g  - 24f+h[2A2(~ + g  -2) -2BZ(a + g  - 2d) + 8AB(f - b)] 

~ 4 = b -  fB+h[B2(b+ f ) + A B ( 2 - d - a ) ]  (2.1Of) 

f - b + h A B ( a + g + 2 d - 4 )  ( 2 . W  

where we have chosen to extract 512 as our energy scale. We will look at the physics 
of this Hamiltonian in some detail in section 4, but there are several important conceptual 
points to be dealt with here. 

The first key observation is that if we look at @.IO), then at face value we have a 
much more complicated Hamiltonian than we started with: we seem to have been going 
in the wrong direction! Perhaps even worse is the fact that this Hamiltonian does not 
conserve number locally at both the two- and single-particle level. Although both of 
these observations are true, there are some important facts which reduce their significance. 
Probably the most important point is that our vacuum Ix) is a much better starting point for 
dimer calculations than the totally ferromagnetic state, which would otherwise be selected. 
We have already found the best short-range correlations in selecting x and then the d! degrees 
of freedom yield only minor corrections, inducing weak additional local correlations. Also, 
the choice of x is intimately related to the fact that the Hamiltonian does not conserve single 
particles. Optimizing the energy in the absence of dts is equivalent to choosing x so that 
a4 = 0 and the vacuum is stable against single-particle fluctuations. Our technical decision 
to include the parameter x in our description is equivalent to ensuring single-particle number 
conservation. The natural residual role of the d) degrees of freedom is therefore to weak 
pairing fluctuations, as we shall see in section 4. 
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The most important degree of freedom in our modelling is x ,  which gives the system the 
freedom to choose between a variety of short-range correlations. In our second application, 
to a single hole in the infinite4 Hubbard model with nearest- and next-nearest-neighbour 
hopping, the t r t 2  model, this degree of freedom is once again crucial. The original model 
is 

H = -tl CI(I - c / ~ c ~ ~ ) c ~ , c , + ~ , ( I  - C , + , , C ~ + ~ ~ )  t + CCI 
io 

where c!, creates an electron of spin U on site i ,  and the restriction to single occupancy 
is enforced by the projection operators in brackets. Since we are dealing with a single 
hole, we can use Bloch's theorem to eliminate the position of the hole and use a spin-only 
representation for the model. We consider two states, I x ,  0) and I x ,  l ) ,  where the first finds 
the hole centred between a pair of spins transposed by 40 and the second is a translation of 
the first through one atomic spacing, yielding a state with the hole centred between a pair 
of spins transposed by PO. We label the operators away from the hole with e, to the right 
and $j to the left. Note that this choice is not symmetric, since there is no for I x ,  0) 
and no bo for Ix ,  1). For this choice the Hamiltonian is 

Ho = t [ T  + 7--1 + x(T-2Fl + 7 - 2 4 ) ]  (2.12a) 

HI = t [T  + T-' + A ( T - 2 Q ~  + T'Q,)] (2.12b) 

where we have chosen to reparametrize tl = f and t2 = A t ,  and the operator T translates 
through one atomic spacing. We can start with the states Ix, x )  and, by allowing the hole to 
hop progressively further away, create an increasing basis which can be described by the d] 
operators. Employing the results (2.6) and (2.7) then allows us to deduce the Hamiltonian 
in our chosen subspace. The key step is to optimize the resulting energy over the x degree 
of freedom, in order to deduce the type of spin-correlations that the hole prefers to move 
into. We will perform these variational calculations in section 5. 

3. Correlation functions 

In this section we analytically solve for the spin-spin and cyclic-permutation correlation 
functions for OUT states Ix) .  The fundamental reason that we can calculate these quantities 
is that the correlations are only short range and can therefore be controlled locally with a 
transfer-matrix-like technique. 

We start with the easier case of the spin-spin correlations. We group the correlation 
functions into groups of four, consi@ig simultaneously the correlations betyeen the pair 
of spins which are transposed-by PO and the pair of spins transposed by P.. Using the 
commutation relations of the Pj, combined with the observation that, if 0. = P1.b is the 
ca",sppi$o? that permutes the closest pair of the four spins, then &,6,~0, ,  pn&Pn and 
P0Pn0,PnP~, constitute the other three transpositions, and all four can be written down 
simultaneously as 

?I-1 
" 1  0 (xI$F;"6& P; I x )  = (Dl n(l + x  - 2 x 4 )  

,=I 

x - &%((~.p - &Pn)dn(up - S . p b n ) ( ~ , o  - Bp~00)lD) (3.1) 
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where ax is LY if x = 0 and -p  if x = 1, and px is B if x = 0 and -a if x = 1. 
The key to evaluating this expression is to understand the action of the operators P, in 

the product. Each additional i, lcads to a further inequivalent singlet with the exception 
of the final one. The result one obtains is therefore exactly what one would have got for 
the original dimer phase plus a contribution coming from the term in n;:: PI. Careful 
consideration of this final term shows that there are two possibilities: either the final @j 

makes an inequivalent singlet or it does not. For the first case there is no additional 
contribution, whereas for the second there is. For an even value of n an additional loop is 
formed, whereas for an odd value of n two additional loops are formed. Careful attention 
to detail reveals that 

(3.W 

(3.2b) 

(3.2~) 

= f +2St .S2. 

(x16,lx) = z I - ;(a - B)2a*x"-' 

(xlPoPn6.P"Po~x) = 5 1 3  - %(U - B)2B2x"-l 

(xl~fJ6&Jlx) = (xlP"6"P"I.x) = f + $Y -p)2LYBx"-l 

from which the spin-spin correlations may be immediately deduced via 
The result is completed if we remember that S, .Si = and that ( X I & )  = f ( 1  - 3x1. 

1 . 5 .  
z = 0.75 -! 

1 -  :i 
i 
J 

2 . 5  - z = 0.5 -,'i . 
t :  

Figure 1. A sequence of calculations of the Fourier transform of the s q w e  of the spin-spin 
correlation functions, namely IS*\* = xn Si .Si+. cosnak. We have chosen to plat for values 
of x = 0.75.0.5, 0.25.0.0, -0.25, -0.3333; k varies from the zone centre to the w n e  boundary. 
The plots cycle through small dashes (x  = 0.75 and 0.0). large dashes (x  L 0.5 and -0.25). to 
full curves (x = 0.25 and -0.33333). 
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Transforming into reciprocal space, in order to make predictions for magnetic neutron 
scattering, involves summing geometric series, and we have depicted a few examples in 
figure 1. The exponential decay is obviously controlled by x ,  and when x is positive there 
are clearly some long-range effects present. 

Our second calculation, of cyclic permutations, is less straightforward. Once again we 
consider four ring-exchange operators together, using the idea that if l& p-ushes the spin on 
the atom furthest to the left to the atom furthest to the right, then kn&, P,d, and p,,&& 
will induce the other three cyclic permutations. All four can then be written down using 

with bi being a transposition operator permuting the furthest two spins and with similar 
definitions to the last case for most quantities. 

This expression is rather more difficult to handle, because one findsfinite loops can be 
completed at different positions along the exchange. We can however 'integrate' out each 
atom in turn using a sort of 'transfer' matrix which counts whether or not a loop has been 
closed, supplying a factor two, and also including any phases from reversed singlets. For 
us this transfer matrix is 

ff -0 0 

8-20! 0 0 
M = [  -a 0 -81 

in terms of which the correlation functions are 

(3.4) 

Once again, this resuIt must be completed with the observation that ( x ( & x )  = 1(1 - 3x) .  
The manner in which we start off this correlation function is subtle; for Heisenberg problems 
we elect to use unity as the on-site contribution. For Hubbard model problems we use 
negative unity for the on-site contribution, unity for the two nearest-neighbour contributions 
and then minus these cyclic permutations for the longer-range correlations. With this choice 
we are led to the change in nk for the Hubbard model (see the appendix). 

Transforming into reciprocal space is once again a collection of geometric series, with 
the eigenvalues of M, squared and divided by two, playing the role of the exponential 
decay. In figure 2 we depict a variety of the spin-model correlation functions, which we 
will comment on in the next section. 

4. The J lJZ  model 

Although the J 1 - h  model is probably the simplest quantum spin model that exhibits a 
phase transition between a gapped and gapless phase, it has not been solved, and when and 
how the phase transition occurs can only be surmised. The point JZ = 0 has been solved 
via the Bethe ansatz [6], and is gapless, whereas the point Jr = 21, is trivially solved 
by a dimer state [2], and is gapped. Due to the complexity of a Bethe ansatz solution, 
correlation functions are not easily calculated for the gapless model and have to be deduced 
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Figure 2. A sequence of d!ulations of the Fourier vansfym of the cyclic-permutation 
correlation functions, namely Rx = En R,;,, cosnat where Rcn cyclically permutes the n- 
spins from the atom i .  and &o is chosen to be unity. We have chosen to plot for values of 
x =0.75, 0.5. 0.25, 0.0, -0.25, -0.3333; k varies from the zone centre to the wne boundary. 
The plots cycle through small dashes (x = 0.75 and O.O), large dashes (x = 0.5 and -OX), to 
full curves (2 = 0.25 and -0.33333). 

asymptoticaliy from the presumed continuum limit of the model [ 11. On the other hand, the 
dimer phases are very easy to describe and any correlation function can usually be deduced 
almost immediately. The purpose of the current paper is to apply minor modifications to 
the methods which successfully yield the dimer-state correlation functions in order to try to 
exterpolate to the gapless phases, and to pick up any likely signature of the phase transition. 

The simplest calculation one can perform is just to minimize the energy of the state 
I x )  as a function of x ,  for each A. As we already pointed out, this is equivalent to either 
minimizing a0 or letting a4 vanish. The behaviour of the optimum x is depicted in figure 3: 
for the gapless phase we have x positive, whereas for the gapped phase x drops to zero and 
then becomes negative. The two natural limits are x H 1 when Jz H --MI and x ++ - 4  
when JZ H fco. The system is doing the best it can to try to emulate the different types of 
tong-range correlations found in these limits. Energetically, the calculation is surprisingly 
accurate, yielding -0.436835 for the Heisenberg ground state, less than 2% away from the 
exact answer -0.443 15J. 

The next 'natural' improvement that one can make is to apply a Bcs-like theory to 
the second-quantized Hamiltonian of equation (2. IO). We enforce only pair fluctuations, 
eliminating the final two terms, and then apply a mean-field argument to the remaining 
Hamiltonian. Obviously, since there are only two degrees of freedom per singlet, we need 
to use fermionic statistics for the d) operators, but with a careful ordering of the pair 
operators, dj+ld j ,  t t  there is no intrinsic problem. We no longer have our argument that 
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Figure 3. Calculations of the optimum value of x ,  Fi re  4 Plots of the three correlation functions; 
calculated as a function of h, the nlio of malrix 
elements in the 31-J2 model. The full curve employs of mamx elements in the 31-52 Heisenberg model, The 
the states Ix). and the broken curve involves the BCS- correlation functions are, rapectively, the full, small. 
like pairing-theory ground states. dash and large-dash broken curves. 

the system does not couple to single-particle fluctuations, and we simply ‘switch them 
off, and then optimize over x in their absence. In figure 4 we depict the single-particle 
correlation functions in the optimum state: (djdj), (df+ldj) and (df+,d,!). It is clear that the 
modifications to Ix )  are minor, although the ground-state energy for the nearest-neighbour 
Heisenberg model does improve to -0.44001J. less than I% away from the exact answer. 
We also comment that in the region where the phase transition is expected, the number 
of ‘excitations’, namely (dfdj), and the pairing correlations, namely (dj+,df), both pass 
through a maximum. The range of the correlations is expected to increase, although we 
cannot prove this, being unable to evaluate the correlation functions in the presence of the 
df . 

Independent arguments, to do with the solitonic excitations in the system, suggest that the 
phase transition occurs when the cyclic-exchange correlations diverge (see the appendix). 
In our calculations these correlations increase with reducing Jz without a turning point, 
although there is clearly an incipient instability as expected near the non-interacting ‘Fermi 
surface’, namely halfway to the zone boundary. There is no evidence from this calculation 
of this criterion for the phase transition. 

Our calculations follow the expected behaviour of the system faithfully: the spin density 
moves smoothly from around the zone boundary to the ‘Fermi surface’ halfway to the zone 
boundary. There is a bifurcation of the single peak into a pair of peaks that occurs near 
x - -0.07, and we have some idea what to expect in broad terms. We have not learned 
anything fundamentally new and have not gained a lot of insight into the phase transition 
as yet. 

[d,d,),!d)+,d,) ‘, 
Y .  and (d:+,d:),asafunctionofthenfio 

5. The tl-b model 

The motion of a single hole under the action of the infinite4 Hubbard model is interesting 
because it constitutes a new physical mechanism for lifting the spin degeneracy in aquantum 
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spin-half magnet. It is plausible that it is this phenomenon that occurs in perovskite 
superconductors, where the doping of a small concentration of holes changes the physical 
properties of the system dramatically. 

The main difference between the spin interactions coming from hole motion and 
Heisenberg spin interactions, is that the hole motion is an interaction localized around 
the hole, whereas Heisenberg interactions are equally likely to occur anywhere in space. 
The energy of the hole motion is dominated by a few spins in the vicinity of the hole, but 
the manner in which the spin correlations spread out is energetically almost irrelevant, but 
physically quite interesting. The current technique yields insight into precisely this aspect 
of the problem. 

We can use our x degree of freedom far from the hole in order to give the system a 
restricted but fairly wide choice of spin correlations to ‘tunnel’ into, and we can use ow 
d,’ degrees of freedom locally, in the vicinity of the hole, to give back the short-range 
correlations which are of so much importance to the energetics. 

Figure 5. Plots of various quantities as a function 
of A, (he ratio W e e n  the next-nearest- and nearest- 
neighbour hopping, t ? / f I .  (a) The total energy 
saving with respect to the termmagretic ground 
state. (b) The optimum value of x at a long 
distance from the hole. (c) ”be probability that 
lhe hole is on its preferred sublaltice. We calculate 
for increasi;g bases, allowing the h e d o n  of one 
additional Pi and Pj  per calculation. All three 
quantities decrease with inweasin% accuracy over 
the majority of the plots. altemaling between the 
full and broken curves. Rnlioofmrtrh alommb (I2/11) 

We start out with two states already described, Ix, x ) ,  and then dlow all possible d] 
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fluctuations up to a fixed finite range from the hole. We have elected to have one more 
degree of freedom on the I x ,  1) state, which favours the breaking of the symmetry. We have 
performed a sequence of calculations allowing 2n mixtures of d! for state Jx,  0), and 2n + 1 
for state I x ,  1). We have then superimposed some plots of the physical characteristics 
of our solution in figure 5,  for increasing values of n. The most important observation 
to make about the solution, is that it  is symmetry broken: the hole selects one of the 
two natural sublattices as dominant and spends longer on that sublattice than on the other. 
Simultaneously, the spin wavefunction dimerizes, which is why our calculations are of some 
practical value. In figure 5(a) we plot the total energy, showing that only the larger values 
of X = tz/tt yield any significant effect from allowing further short-range correlations. In 
figure 5(b) we plot the behaviour of the optimum value of x as we change the ratio h: 
we range from the closest state to the Heisenberg ground state at small A, as anaIytically 
predicted, to close to the best that the next-nearest-neighbour Heisenberg coupling can 
manage as X becomes large. In figure 5(c) we plot the probability that the hole sits on its 
dominant sublattice, the natural measure of the charge symmetry breaking. The easiest thing 
to believe is that there is no symmetry breaking in the two limits, and that the symmetry 
breaking is maximal near h -, 1.5. 

This calculation is surprisingly accurate in the regime with strong symmetry breaking. 
For example, the 'exact' (using exact diagonalization) result for X = 2 is E = -4.9190f1, 
whereas our calculation predicts E = -4.9184tl. The x degree of freedom at long range is 
more important than the short-range spin configurations omitted in our technique. 

As we vary the parameter X, the behaviour of the tl-tz Hamiltonian mimics that of 
the Jl-Jz Heisenberg model, with the intermediate region of dimerization found in the 
Heisenberg case corresponding to a symmetry-broken state for the hole where the hole 
chooses a preferred sublattice and the spins dimerize in order to stabilize the hole's choice. 

Our calculations have proven reasonably predictive in this case, since there are no 
clear analytic predictions for the limit ft P+ 0. The only other methods of tackling this 
problem, namely exact diagonalization and mean-field theory, are more difficult to employ 
and suffer from rather different illnesses to the current calculations. Since our calculations 
are very simple, it is possible to make some statements about why the behaviour observed 
occurs. The fact that the optimum x drops below zero only for values of n > 1, indicates 
that the key physical process is hopping on the least preferred rail, and the corresponding 
introduction of longer-range loops into the most probable hopping pattern of the hole. 
Hopping around a square loop includes a cyclic exchange of three spins which contains a 
component of antiferromagnetic next-nearest-neighbour exchange. This simply predicts the 
observed behaviour, as loops of different length become more relevant. 

M W Long and C A  Hayward 

6. Conclusions 

By considering the valence-bond description of the total-spin-singlet subspace, we have 
developed a complete hierarchical basis for this space. If we use only the first step of 
the construction, then we are provided with a variational technique for analysing quantum 
mechanical spin problems. An even simpler restriction, to a single-parameter family of 
singlets, namely I x ) ,  appears to provide the majority of the short-range degrees of freedom, 
and for a problem where it is desired to find :he way in which some spin degeneracy is 
lifted, our technique appears useful. 

Although our calculations are variational, the simplicity of our wavefunctions permit 
us to calculate both spin-spin and cyclic-exchange correlations, and we find excellent 
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agreement between the short-range aspects of our solution and the exact diagonalization 
predictions. We are, however, completely unable to deduce anything about the power-law 
singularities, if present, although there are large finite peaks in our calculations which would 
be a clear indication of an inherent long-range phenomenon. 

We have given a simple overview of the short-range behaviour of both the JI-Jz 
Heisenberg model and the single-hole tl-t2 infinite-U Hubbard model. The way in which 
the spin degeneracy is lifted is successfully predicted in both cases. 

It seems clear that there are a large number of improvements that can be made to the 
theory, although it is not so clear whether or not any fundamentally more relevant picture 
than our simplistic overview will emerge. It is probably of some value to by to describe 
the total-spin-triplet and solitonic spin-half excitations in this description, in order to assess 
the theory’s limitations. The triplet calculation involves locally breaking a singlet, but 
the solitonic calculation involves non-orthogonal states and a strong grasp of the cyclic- 
permutation correlation functions. 

There are two quite important longer-term considerations. The states presented have 
correlations which extend beyond nearest neighbours. Any model with slightly longer- 
range interactions will therefore yield non-trivial energy from our states and can become 
competitive with the more widely used singleparticle approaches to many-body problems. 
So far we have only actively considered the first hierarchy of states. Extensions to the 
second hierarchy ought to improve considerably the predictive power. 

Appendix. 

Although we will treat cyclic-exchange correlations more fully elsewhere, here we will 
indicate why they might be important in the current type of problem. The basic idea is 
that one is probing the topological domain-wall excitations. If we apply cyclic-exchange 
permutations of increasing range sequentially on a particular state, then we find 

State UN UI 62 a 3  a4 a5 a6 a7 
RI UN* U1 Ul* U3 U4 0 5  U6 U7 

kz UN* U2 63 Ul* U4 U5 U6 UT 

k 3  ON* U2 6 3  U4 Ul* U5 06 U7 

6 UN* 0 2  6 3  0 4  0 5  U ] *  U6 U7 
R5 UN* 6 3  ~4 ~5 06 UI*  07 

and it is clear that we are introducing an increasing region of spins that are translated by one 
lattice spacing with respect to their original configuration. In creating this region we are also 
clearly introducing two domain walls, one at each end of the translated region. The first is 
found between UN and u2. and the second is found at the extraneous UI (marked by *). As 
the range of the cyclic permutation is increased, so one domain wall is translated away from 
the other. Any divergence that shows up in the Fourier transform of these cyclic-exchange 
correlations can probably be interpreted as coming from low-energy domain walls in the 
spectrum. 

On account of this interpretation, we are proposing that calculations of cyclic-exchange 
correlations are the correct one-dimensional probe of the ‘spinon’ spectrum, hence our 
careful analysis of these correlations. 

When one considers the single-particle occupation number, n(k) = ~ r ( c ~ o . c ~ ) .  in the 
context of the Hubbard model, then cyclic-exchange correlations resurface. In terms of 
a spin-charge separated basis, where the spins ordered along the chain are considered as 
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a sequential spin wavefunction, then the transfer of an electron along the chain is clearly 
directly related to a cyclic exchange of variable length applied to this spin wavefunction. 
For a single isolated hole, this cyclic exchange has a fixed length and takes us directly to 
a relationship between n ( k )  and the Fourier transform of the cyclic-exchange correlations. 

M W Long and C A Hayward 

References 

[I]  Schulfr H J 1991 Inr. 1. Mod Phys. B 5 57 
[Z] Majumdar C K and Ghosh D K 1969 J. Marh. Phys. 10 1338 
[31 Hulfhcn L 1938 Ark. Mal. As:,. Phys. 2bA 1 

Liang S. Douwl B and Anderson P W 1988 Phy8. Rev, LCII. 61 365 
[41 Temperley H N V and Lieb E H  1971 Pmc. R. Soc. A 322 251 

Bondeson S R and Soos 2 G 1980 Phys Rei*. B 22 1793 
Long M W and Si& S 1993 J.  Phys.: Condens Mover 5 581 I 

[SI Affleck I, Kennedy T, Lieb E H and T3saki H 1987 Phys, REV. Leu. 59 799 
[6] Bethe H A 1931 Z Phys. 71 205 


